

Анализатор глюкозы автоматический «Энзискан Ультра»

МЕТОДИКА ПОВЕРКИ МП 254-10-2008

Руководитель отдела ФГХП «ВНИИМ им.Д.И.Менделеева»

С.А.Кочарян

Настоящая методика распространяется на анализатор глюкозы автоматический «Энзискан Ультра» (в дальнейшем – анализатор), предназначенный для измерений молярной концентрации глюкозы в биологических жидкостях, и устанавливает методы и средства его поверки.

Анализаторы подлежат первичной и периодической поверке. Межповерочный интервал –1 год.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки должны быть выполнены следующие операции:

Таблица 1

N	Наименование операций	Номер пункта методики	Обязательность проведения	
	_			
			При первичной	При
			поверке и	периодической
			после ремонта	поверке
1	Внешний осмотр,	6.1	Да	Да
	Проверка комплектности			
2	Опробование	6.2	Да	Да
3	Определение		Да	Да
.	метрологических			
	характеристик:			
	- определение	6.3		
	метрологических			
	характеристик			
	анализатора;			
	- определение	В соответствии		
	метрологических	ЛИАФ.942841.002.Д3		
	характеристик дозатора	«Дозаторы пипеточные		
	in the second process of the	автоклавируемые с		
		фиксированными и		
		переменными		
		объемами доз одно- и		
		многоканальные ДПА.		
		Методика поверки»		

1.2. Если по любой операции поверки получен отрицательный результат, поверка прекращается и выдается извещение о непригодности.

2. СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться следующие средства:
- глюкоза кристаллическая, квалификация «чда», ГОСТ 6038-79;
- вода дистиллированная, ГОСТ 6709-79;
- весы лабораторные по ГОСТ 24104;
- термометр лабораторный с ценой деления 0,1°C по ГОСТ 215-73;
- посуда мерная лабораторная стеклянная, ГОСТ 1770-74.

3. УСЛОВИЯ ПОВЕРКИ

- 3.1. При проведении поверки должны быть соблюдены следующие условия:
 - температура окружающего воздуха, °С

 20 ± 5

- диапазон значений атмосферного давления, кПа
- от 86 до 107;
- диапазон значений относительная влажность воздуха, %
- от 30 до 99.
- 3.2. Перед проведением поверки анализатор следует прогреть в течение не менее 15 минут.
- 3.3. Установка и подготовка прибора к поверке, выполнение операций при проведении контрольных измерений осуществляется в соответствии с эксплуатационной документацией.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1. Требования безопасности должны соответствовать рекомендациям, изложенным в техническом описании на приборы.
- 4.2. Следует соблюдать осторожность при работе с пробами. Существует возможность заражения рук при работе с препаратами крови. Необходимо надевать резиновые перчатки при работе с поверочными растворами. После окончания работы необходимо протереть руки дезинфицирующим средством. При попадании капель пробы в глаза необходимо промыть глаза водой и проконсультироваться с врачом.

5. ПОДГОТОВКА К ПОВЕРКЕ

- 5.1. Перед проведением поверки необходимо ознакомиться с руководством по эксплуатации и выполнить следующие подготовительные работы:
- ◆ проверить наличие и срок годности калибровочных стандартов, реактивов и материалов, входящих в комплект поставки анализатора;
- ◆ приготовить поверочные растворы глюкозы №№ 1,2 и 3 (табл.3), в соответствии с методикой, приведенной в Приложении Б ;

Таблина 3

Номер	Массовая концентрация	
поверочного раствора	глюкозы, мг/л	
№ 1	500	
№ 2	1500	
№3	4500	

 ◆ подготовить анализатор к работе в соответствии с разделом 3 Руководства по эксплуатации.

Примечание: поверочные растворы глюкозы допускается хранить не более 5 суток при температуре от 2 до 8 $^{\circ}C$.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1. Внешний осмотр

При проведении внешнего осмотра должно быть установлено:

- наличие Руководства по эксплуатации (на русском языке);
- соответствие комплектности прибора его спецификации;
- отсутствие механических повреждений корпуса;
- целостность показывающего узла;
- правильность размещения анализатора на рабочей поверхности стола (согласно руководству по эксплуатации).

6.2. Опробование

Выполнить процедуры калибровки анализатора согласно п. 3.8. Руководства по эксплуатации с использованием калибратора, входящего в комплект поставки прибора.

Прибор допускается к дальнейшему проведению работ по поверке, если получены стабильные показания на дисплее анализатора.

- 6.3. Определение метрологических характеристик
- 6.3.1. Определение относительной погрешности анализатора выполняется с помощью поверочных растворов №№ 1,2 и 3 в режиме «Измерение глюкозы в сыворотке».
- 6.3.2. Проведите измерение массовой концентрации глюкозы в поверочном растворе №1, для чего:
- введите поверочный раствор № 1 в реакционную камеру с помощью дозатора, прилагаемого к анализатору;
- приблизительно через 10 секунд с дисплея анализатора считайте измеренное значение массовой концентрации глюкозы в поверочном растворе;
 - повторите операции по п.6.3.2 не менее 10 раз.
- 6.3. 3. Погрешность анализатора при измерении молярной концентрации глюкозы вычисляется следующим образом:
- 6.3.3.1. Определите среднее значение измеренной молярной концентрации глюкозы \bar{K} по формуле 1.

$$\bar{K} = \frac{\sum_{i=1}^{10} K_i}{10} \tag{1}$$

где: \bar{K} — среднее значение концентрации, полученное за 10 измерений, ммоль/л;

 K_i – значение концентрации, полученное при каждом измерении, ммоль/л.

6.3.3.2. Определите значение основной относительной погрешности при измерении концентрации глюкозы по формуле 2.

$$\delta K = \frac{Ki - K_{\mathfrak{I}}}{K_{\mathfrak{I}}} \times 100 \tag{2}$$

где: K_i – значение концентрации, полученное при каждом измерении, ммоль/л;

 K_9 – значение молярной концентрации глюкозы в поверочных растворах, ммоль/л;

 δK – значение основной относительной погрешности, %.

6.3.3.3. Определение относительного СКО случайной составляющей погрешности проводят по формуле 3.

$$\sigma_K = \frac{1}{3K_9} \sqrt{\sum_{i=1}^{10} (K_i - \bar{K})^2} \times 100$$
 (3)

где: K_9 – значение концентрации эталонных растворов, ммоль/л;

 K_i – значение концентрации, полученное при каждом измерении, ммоль/л;

 \bar{K} – среднее значение концентрации, из п. 6.3.3.1., ммоль/л;

σк − значение относительного СКО случайной составляющей основной погрешности, %.

- 6.3.4. Повторите операции по п.п. 6.3.2, 6.3.3 для поверочных растворов №2 и №3.
- 6.3.5. Результаты испытаний положительные, если значения погрешности δK для всех поверочных растворов не превышают 6 % и значения σ_K для всех поверочных растворов не превышает 3%.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. При проведении поверки анализатора составляется протокол результатов измерений, в котором указывается его соответствие предъявляемым требованиям.
- 7.2. Анализатор, удовлетворяющий требованиям настоящей Методики, признается годным. Положительные результаты оформляются свидетельством о его поверке.
- 7.3. На прибор, признанный не пригодным к эксплуатации, выписывается извещение о непригодности с указанием причин.

ПРОТОКОЛ ПОВЕРКИ

Зав. но	мер	-		:кан Ультра»
Услови		ура окружающего воз ое давление ьная влажность РЕЗУЛЬТАТЬ	кПа; %.	
2.Резул 3.Резул	пьтаты внешнего осмовьтаты опробования _ пьтаты определения п па 1. Результат опреде	отра		сти анализатора.
Номер поверо чного раствор а	Значение молярной концентрации глюкозы в поверочном растворе	Измеренное значение молярной концентрации глюкозы	Предел допускаемой относительной погрешности	Максимальное значение погрешности, полученной при поверке
	ца 2. Результат опре пности анализатора.	деления значения от	гносительного СКО	случайной составляющей
Номер поверо чного раствор а	Значение молярной концентрации глюкозы в поверочном растворе	Измеренное значение молярной концентрации глюкозы	Предел допускаемого относительного СКО случайной составляющей погрешности	Максимальное значение погрешности, полученной при поверке
4. Закл	ючение			
Повери	тель			

Методика приготовления поверочных растворов глюкозы

1. Назначение и область применения методики

Методика регламентирует приготовление поверочных растворов глюкозы с массовой концентрацией 500, 1500 и 4500 мг/л. Растворы предназначены для проведения поверки анализаторов глюкозы «Энзискан Ультра».

2. Метрологические характеристики.

- 2.1. Массовая концентрация глюкозы:
- в поверочном растворе №1: 500 мг/л (2,77 ммоль/л);
- в растворе №2: 1500 мг/л (8,3 ммоль/л);
- в растворе №3: 4500 мг/л (24,9 ммоль/л).
- 2.2. Погрешность приготовления поверочных растворов составляет: ±3 % при P=0,95.

3. Средства измерений, вспомогательные устройства, реактивы и материалы.

- 3.1. Средства измерений:
- автоматические пипетки "Labsystem", вместимость от 0,2 до 1 мл, от 5 до 40 мкл; от 40 до 200 мкл, \pm 1,5 %;
- лабораторные весы ВЛР-200г, ГОСТ 27425-87, погрешность взвешивания ±5 мкг.

Вспомогательное оборудование:

- стакан H-1-100 TXC по ГОСТ 25336-82.
- электрошкаф вакуумно-сушильный, диапазон температур от 0 до 300 °C

Реактивы:

- глюкоза кристаллическая, квалификация «чда», ГОСТ 6038-79;
 - вода дистиллированная, ГОСТ 6709-79;
 - бензойная кислота К-3 (ОСЧ-ОП-3).

4. Процедура приготовления.

- 4.1. Подготовка раствора.
- 4.1.1. Глюкозу предварительно высушивают до постоянного веса при 37 °C и хранят в эксикаторе.
- 4.1.2. Контроль качества дистиллированной воды.

Контроль качества дистиллированной воды проводится с помощью кондуктометра КЛ-4.

Измеренное значение удельной электрической проводимости технологической воды должно составлять не более 10^{-4} См/м.

4.1.3. Подготовка флаконов.

Флаконы моют теплой водой, удаляя имеющиеся налеты на стенках с помощью ершика. Затем флаконы опускают в хромовую смесь. Слив хромовую смесь, флаконы оставляют на несколько минут, после чего ополаскивают вначале водопроводной водой (до полного удаления хромовой смеси), а затем 3-4 раза дистиллированной водой. Флаконы помещают в сушильном шкафу. Сушку проводят 2-3 часа при температуре (80-110) °C.

- 4.2. Приготовление растворов.
- 4.2.1. Готовится основной раствор глюкозы (поверочный раствор №3), для чего 4500 мг глюкозы растворяют в 400 мл насыщенного раствора бензойной кислоты (0,3%). Затем доводят объем раствора до 1000 мл.
- 4.2.2. Готовятся поверочные растворы глюкозы №2 и №1, для чего основной раствор разбавляется соответственно в 3 и 9 раз.
- 4.2.3. Укупорка флаконов.

Поверочные растворы заливают в стеклянные флаконы объемом по 10 мл и укупоривают герметизирующими резиновыми пробками.

5. Требования безопасности.

При работе с хромовой смесью и бензойной кислотой необходимо надевать одноразовые резиновые или пластиковые перчатки.

При попадании раствора на кожу необходимо смыть его водой.

Приготовленные растворы предназначены только для применения in vitro.

6. Требования к квалификации оператора.

Поверочный раствор готовит инженер или лаборант со средним специальным образованием, имеющий навыки работы в химической лаборатории.

7. Требования к упаковке и маркировке.

Поверочный раствор хранят во флаконах с герметизирующими пробками. На флакон наклеивают этикетку (наносят маркировку) с указанием массовой концентрации глюкозы и датой приготовления.

8. Условия хранения.

Поверочные растворы хранят при температуре от 2 до 8 °C в холодильнике в течение 5 дней. Замораживание не допускается.